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Observer-based parameter estimation

Take %x = f(x, u(t), p) with output y(t) = h(x) and control u(t).
The goal is to estimate p (and x) from noisy measurements of
y.
State-parameter asymptotic observer Can we find g; and g»
such that the solution (X(t), p(t)) of

d. N R N N
ax(t) = f(X) U(t)’p) + 01 (X7 U(t)vpay(t))
d. N N
giP(0) = g2(%,u(t), b,y (1))

with an arbitrary initial state (Xg,09) converges towards (x(t),p)
as t — oo?
Invariant asymptotic observers (Thesis of Silvére Bonnabel).



Outline

An invariant asymptotic observer for a 2-level system

Semi-local convergence proof

Possible extensions



The estimation problem for a two-level system

DB,
U at? L1202 5 %P

y = Tr(ozp), (groud state population)

|g> where:

p is the density matrix: a 2 x 2 symmetric > 0 matrix with
Tr(p) =1 and Tr(p?) = 1 (here a projector).

>6X:<? 8), q,:(? 6’), cz:<g) 01>arethe

Pauli matrices: 62 = 1; ox0y = 105..

» the two real parameters are A (the difference between the
atomic frequency (transition |g) < |e)) and the laser
frequency of amplitude u) and 1 > 0 the dipole strength.

» up is the Rabi pulsation. This model is based on a singular

perturbation of a Lindblad equation modelling the evolution of an
ensemble of identical 3 level quantum systems.
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Hamiltonian identification for quantum systems

Unknown parameters: u and A.

Some previous methods:

Maximum-likelihood (Rabitz, Kosut, Walmsley, Paris, Mabuchi)
Maximum (Kullback) entropy (Buzek, Paris, Oliveras)

Optimal identification via least-square crieteria (Rabitz, Geremia)

Main issues: Robustness wrt uncertainties and noises, Computational cost,
local minima.

Observer-based parameter identification (a previous result):

R.L. Kosut and H. Rabitz, 15th IFAC world congress, 2002.
Asymptotic state observer + iterative search algorithm to update the estimate of the
parameters
Our approach: adptive observer



The non-linear asymptotic observer

ds_ éo + %6 O
dtp = l 2 z 2 Xap
~ Ko (Tr(02p) — y) (02P +poz —2Tr (02p) )
d R ~ A
G = UK (oyp) (Tr(ozp)—y)
d . . R
A= —UKaTr(0xp) (Tr(02P) — )

with positive gains K, K, and Ka. Preservation of Tr(p) = 1
and Tr (p?) =1.

Convergence results from averaging consideration (RWA)
under the following assumptions and gains design:

» slowly varying u versus Rabi pulsation |up|: |U] < u?u.
» Small detuning |A|, |A| < |ulu and |fii—o — u| < U
» Small gains: K, < [ulu, /Ky < i, Kn < Kyt



Simulation with perfect measures
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S|mulat|on with noisy measures (c =2/10)
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Initial condltlons. pPo =
u= 1’A = %’ p\O = OxPoOx
Control/gains: u=1, K, = 2¢|u|u, K, = 2¢?u? and
Ka = 2€2|uju? with e = L.
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Invariance versus SU(2) action
For any U € SU(2), the transformation ((u, y, A, 1) unchanged)

p— @ =— UpU', 05— ¢y =UocxU",...

leaves

d A u(t

aP = [262+ (2)u6X7p:|7 y =Tr(ozp)
unchanged:

d A u(t

G0= [2g2+ (2)”gx,w], y=Tr(c:@),

and ¢x,¢y,¢- are new Pauli matrices.



SU(2) invariance of the non-linear observer

For any U e SU(2), the transformation ((A, ft) unchanged)
[5 = é:H UﬁUT,Gx’_) gx — UGXU-&7

leaves the asymptotic observer

d. A upt
aP =t |2% Gx’p]
— Kp(Tr(02p) — ) (02 +poz — 2T (0xp) p)
(ijtﬂ = —uK,Tr(oyp) (Tr(czp)—y)
jt = —uKaTr(oxp) (Tr(o2p) —y)

unchanged.



Assumptions

In
d. A up
ap = —1 [262+ 26x7P]
— Ky (Tr(02p) — ) (2P + po; —2Tr (02P) p)
cciftﬁ =—uK,Tr(oyp) (Tr(ozp)—y)
gt“ — _UKATH(0xP) (Tr(02P) — )

we assume that v is constant and that
A=ed, K,=4kelulu, K,=2k,e?u? Kp=2kne?|u|u?
fore > 0small e <1, Ky, Ky, ka ~ 1.

Convergence based on perturbation techniques (Rotating
Wave Approximation (RWA)) but up to order 2 in €.



In the interaction frame

Consider the following time-varying transformation

uutoy ~ . uutox » . uutox
2

p—e e, p-et"ée

The dynamics reads:

d
ot

dt

| Q

dt

A o R
_ [elumx(,ﬁ u(uzu)% ;

A
- [Bena,

2

> — Ky Tr (@1 0,(E— &)

B (ezuutcx Gzé + éezuutcx o, —2Tr (ezuutox Gzé) é)

a5 = —uK,Tr (815, € ) Tr (&1 (€ - &))

£
—uKATr(GX§> (IUWXG (& - 5)



First order secular approximation

By assumption the frequency uu is large and the integration of
g'UH1ox will produce terms of small amplitude. We neglect terms
rotating at uu and also 2uu (first order in €):

de Ut ]
2T (06 -)) (6 + Eoy 2T (08) €)
-2 (Gz(é _§)> <GZ§A+§AGZ—2TI’ (Gz£> é)
95— 5 (1 (08 Te (026~ &) ~Tr (0:8) Tr (06~ &)
9A—0



Convergence of £ and [i
Up to second order terms, & and fi obey an autonomous
differential system where & is a parameter:

Ggo [, ]

dt® ~ o0

S (006-0) (08 +20,-27(08)

— ,;pTr <Gz(‘§ - é)) (Gzé + éGZ —2Tr (GZE> é)
Gi= 5 (11 (08) T (026~ 8)) ~Tr (02£) T (0 - &)

Local exponential convergence for any & (excepted some
isolated values) and for any K, K, > 0 via the Lyapounov
function:

5T (o(E=8)) "+ 5T (0x(6-8) + - (a—n ).



Second order secular approximation
We use Kapitsa short-cut method to compute these second
order terms particularly important for & and A since the first
order secular terms vanish.
We can decompose & = & + §&: & is the no-oscillatory part,
whereas ¢ is the oscillatory one with zero mean and small
amplitude [|6&|| < ||€]|. Since $& = —1 [5 €%, E] we have
approximatively:

5e— 18 [?

= _— | TeUlong, E| 4 ...
2U,LL Gy7§]+

Plugging this relation into the true dynamics of £ and taking the
secular terms yields up to the third order:

d A2

a :—lﬂ[Gx,g]—F

the term % corresponds exactly to Bloch-Siegert frequency
shift.



Second order secular approximation (continued)
Since $A = —uKaTr (GX§> Tr (el“ﬂt"xcz(f — c‘,‘)) the secular

effect can only comes from the part of 6§ and 63 with
frequency up: terms of double frequency 2uu have no secular
effect. In the & dynamics

~

gé:_ [A &%, + (”_‘U)Gmé

5 5 —KpTr<e’““"’Xcz(é —5))

N (ezuutcxczé i ée’”“"”‘crz _oTy (ezuptcxazé) é)

the uu frequency oscillatory term, denoted by 615 comes only
from — [ g'Uktox g, 5} Thus

~

515:@

1A

[elU#thGy’é} and 5& = 615 = ﬁ [elU#thGy’é]



Second order secular approximation (end)
We have the following triangular and locally convergent

dynamics:
d g, [0,

- ,;”Tr (cy(f — &)) <6y§ +§Gy —2Tr (cyé) E)

_ ’;"Tr (02(6-8)) (026 +E0; —2Tr (02£) §)
Gz OB (T (0,) Tt (02(€ - &) Tt (026) Tr (06 - 0)))
e S

;A order2 —};A (Tr (6)(3)23 ~Tr (Gxé> Tr(crxé)A>

0B (1 (o) (o306~ ) - T (028 1 (206 - ©))).



Gain design via linear tangent approximation
With
1+Xox+yoy+2o, .

E-¢= 5 ., f=p-u, A=A-A

1-0,.
we have, around p = 5%;
a. - a. .
gy = UKoy, S E=uKiy/2
and around p = 1%

S A=_"AKA
dt u

To respect the scaling, choose 0 < € < 1 and set
K, = 2kyelulu, K, =2e?u®,  Ka = kne?|ulp?

with k,, ka around 1.



N-level system
The system is (A¥ = 0, no laser de-tuning here)

d Ukl kI
P = [Z 2“ ka’,p] Yk =Tr(Pkp)
Kl

with P, = |k) (k| and its asymptotic observer reads:

Kl 1y ki
O [2“ < oxk',ﬁ]
kl

2
—ZKK (PkP) = Yi) (Pkp +pPi—2Tr (Prp)p)
a. N N
g’ =~ LRI (voy'p) (T (cf5) vt 1)

where cX = |k) (I| +|I) (K|, ...
Such extensions are possible since we start with an invariant
observer for the 2-level system, i.e. we exploit the geometry.



Previous works

» |dentifiability for quantum systems: see, e.g., C. Lebris et
al (COCV) where it is shown that resonant controls are
sufficiant.

» Asymptotic observers and symmetries: few references
(Aghannan, Bonnabel, Martin, R., Dayawansa and
coworkers). See the preprint on Symmetry preserving
Observers: http://arxiv.org/abs/math.0C/0612193
IEEE TAC Jan 2009



Measurement process
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