Stochastic gradient descent on Riemannian manifolds

Silvère Bonnabel
Centre de Robotique - Mathématiques et systèmes
Mines ParisTech

SMILE Seminar
Mines ParisTech
Novembre 14th, 2013

silvere.bonnabel@mines-paristech
We proposed a stochastic gradient algorithm on a specific manifold for matrix regression in:

Compete(ed) with (then) state of the art for low-rank Mahalanobis distance and kernel learning

Convergence then left as an open question

The material of today’s presentation is the paper *Stochastic gradient descent on Riemannian manifolds*, IEEE Trans. on Automatic Control, September 2013.
Outline

1. Stochastic gradient descent
 - Introduction and examples
 - SGD and machine learning
 - Standard convergence analysis (due to L. Bottou)

2. Stochastic gradient descent on Riemannian manifolds
 - Introduction
 - Results

3. Examples
Linear regression: Consider the linear model

\[y = x^T w + \nu \]

where \(x, w \in \mathbb{R}^d \) and \(y \in \mathbb{R} \) and \(\nu \in \mathbb{R} \) a noise.

- examples: \(z = (x, y) \)
- loss (prediction error):

\[Q(z, w) = (y - \hat{y})^2 = (y - x^T w)^2 \]

- cannot minimize expected risk \(C(w) = \int Q(z, w) dP(z) \)
- minimize empirical risk instead \(\hat{C}_n(w) = \frac{1}{n} \sum_{i=1}^{n} Q(z_i, w) \).
Gradient descent

Batch gradient descent: process all examples together

\[
w_{t+1} = w_t - \gamma_t \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} Q(z_i, w_t) \right)
\]

Stochastic gradient descent: process examples one by one

\[
w_{t+1} = w_t - \gamma_t \nabla_w Q(z_t, w_t)
\]

for some random example \(z_t = (x_t, y_t)\).

\(\Rightarrow\) well known **identification algorithm** for Wiener systems, ARMAX systems etc.
Stochastic versus online

Stochastic: examples drawn randomly from a finite set
 - SGD minimizes the **empirical** risk

Online: examples drawn with unknown $dP(z)$
 - SGD minimizes the **expected** risk (+ tracking property)

Stochastic approximation: approximate a sum by a stream of single elements
Stochastic versus batch

SGD can converge very slowly: for a long sequence

\[\nabla_w Q(z_t, w_t) \]

may be a very bad approximation of

\[\nabla_w \hat{C}_n(w_t) = \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} Q(z_i, w_t) \right) \]

SGD can converge very fast when there is redundancy

- extreme case \(z_1 = z_2 = \cdots \)
Some examples

Least mean squares: Widrow-Hoff algorithm (1960)

- Loss: $Q(z, w) = (y - \hat{y})^2$
- Update: $w_{t+1} = w_t - \gamma_t \nabla w Q(z_t, w_t) = w_t - \gamma_t (y_t - \hat{y}_t) x_t$

Robbins-Monro algorithm (1951): C smooth with a unique minimum \Rightarrow the algorithm converges in L^2

k-means: McQueen (1967)

- Procedure: pick z_t, attribute it to w^k
- Update: $w^k_{t+1} = w^k_t + \gamma_t (z_t - w^k_t)$
Ballistics example (old). Early adaptive control

- optimize the trajectory of a projectile in fluctuating wind
- successive gradient corrections on the launching angle
- with $\gamma_t \to 0$ it will stabilize to an optimal value
Another example: mean

Computing a mean: Total loss \(\frac{1}{n} \sum_i \| z_i - w \|^2 \)

Minimum: \(w - \frac{1}{n} \sum_i z_i = 0 \) i.e. \(w \) is the mean of the points \(z_i \)

Stochastic gradient: \(w_{t+1} = w_t - \gamma_t (w_t - z_i) \) where \(z_i \) randomly picked\(^2\)

\(^2\text{what if } \| \| \text{ is replaced with some more exotic distance?} \)
Outline

1. Stochastic gradient descent
 - Introduction and examples
 - SGD and machine learning
 - Standard convergence analysis (Bottou)

2. Stochastic gradient descent on Riemannian manifolds
 - Introduction
 - Results

3. Examples
Learning on large datasets

Supervised learning problems: infer an input to output function $h : x \mapsto y$ from a training set

Large scale problems: randomly picking the data is a way to handle ever-increasing datasets

Bottou and Bousquet helped popularize SGD for large scale machine learning\(^3\)

\(^3\)pointing out there is no need to optimize below approximation and estimation errors (for large but finite number of examples)
Outline

1 Stochastic gradient descent
 - Introduction and examples
 - SGD and machine learning
 - Standard convergence analysis (due to L. Bottou)

2 Stochastic gradient descent on Riemannian manifolds
 - Introduction
 - Results

3 Examples
Expected risk:

\[C(w) := E_z(Q(z, w)) = \int Q(z, w) dP(z) \]

Approximated gradient under the event \(z \) denoted by \(H(z, w) \)

\[E_z H(z, w) = \nabla (\int Q(z, w) dP(z)) = \nabla C(w) \]

Stochastic gradient update: \(w_{t+1} \leftarrow w_t - \gamma_t H(z_t, w_t) \)
Convergence results

Convex case: known as Robbins-Monro algorithm. Convergence to the global minimum of $C(w)$ in mean, and almost surely.

Nonconvex case. $C(w)$ is generally not convex. We are interested in proving
- almost sure convergence
- a.s. convergence of $C(w_t)$
- ... to a local minimum
- $\nabla C(w_t) \to 0$ a.s.

Provable under a set of reasonable assumptions
Assumptions

Learning rates: the steps must decrease. Classically

\[\sum \gamma_t^2 < \infty \quad \text{and} \quad \sum \gamma_t = +\infty \]

The sequence \(\gamma_t = t^{-\alpha} \), provides examples for \(\frac{1}{2} < \alpha \leq 1 \).

Cost regularity: averaged loss \(C(w) \) 3 times differentiable (relaxable).

Sketch of the proof

1. confinement: \(w_t \) remains a.s. in a compact.
2. convergence: \(\nabla C(w_t) \to 0 \) a.s.
Confinement

Main difficulties:

1. Only an approximation of the cost is available
2. We are in discrete time

Approximation: the noise can generate unbounded trajectories with small but nonzero probability.

Discrete time: even without noise yields difficulties as there is no line search.

SO ? : confinement to a compact holds under a set of assumptions: well, see the paper⁴ ...

Convergence (simplified)

Confinement

- All trajectories can be assumed to remain in a compact set
- All continuous functions of w_t are bounded

Convergence

Letting $h_t = C(w_t) > 0$, second order Taylor expansion:

$$h_{t+1} - h_t \leq -2\gamma_t H(z_t, w_t) \nabla C(w_t) + \gamma_t^2 \| H(z_t, w_t) \|^2 K_1$$

with K_1 upper bound on $\nabla^2 C$.
Convergence (simplified)

We have just proved

\[h_{t+1} - h_t \leq -2\gamma_t H(z_t, w_t) \nabla C(w_t) + \gamma_t^2 \|H(z_t, w_t)\|^2 K_1 \]

Conditioning w.r.t. \(F_t = \{z_0, \cdots, z_{t-1}, w_0, \cdots, w_t\} \)

\[E[h_{t+1} - h_t|F_t] \leq -2\gamma_t \|\nabla C(w_t)\|^2 + \gamma_t^2 E_z(\|H(z_t, w_t)\|^2) K_1 \]

this term \(\leq 0 \)

Assume for some \(A > 0 \) we have \(E_z(\|H(z_t, w_t)\|^2) < A \). Using that \(\sum \gamma_t^2 < \infty \) we have

\[\sum E[h_{t+1} - h_t|F_t] \leq \sum \gamma_t^2 AK_1 < \infty \]

As \(h_t \geq 0 \) from a theorem by Fisk (1965) \(h_t \) converges a.s. and

\[\sum |E[h_{t+1} - h_t|F_t]| < \infty. \]
Convergence (simplified)

\[E[h_{t+1} - h_t | F_t] \leq -2\gamma_t \|\nabla C(w_t)\|^2 + \gamma_t^2 E_z(\|H(z_t, w_t)\|^2)K_1 \]

Both red terms have convergent sums from Fisk’s theorem. Thus so does the blue term

\[0 \leq \sum_t 2\gamma_t \|\nabla C(w_t)\|^2 < \infty \]

Using the fact that \(\sum \gamma_t = \infty \) we have\(^5\)

\[\nabla C(w_t) \text{ converges a.s. to } 0. \]

\(^5\)as soon as \(\|\nabla C(w_t)\| \) is proved to converge.
Outline

1 Stochastic gradient descent
 • Introduction and examples
 • SGD and machine learning
 • Standard convergence analysis

2 Stochastic gradient descent on Riemannian manifolds
 • Introduction
 • Results

3 Examples
Connected Riemannian manifold

Riemannian manifold: local coordinates around any point

Tangent space:

Riemannian metric: scalar product $\langle u, v \rangle_g$ on the tangent space
Riemannian manifolds

Riemannian manifold carries the structure of a metric space whose distance function is the arclength of a minimizing path between two points. Length of a curve \(c(t) \in \mathcal{M} \)

\[
L = \int_{a}^{b} \sqrt{\langle \dot{c}(t), \dot{c}(t) \rangle_g} dt = \int_{a}^{b} \| \dot{c}(t) \| dt
\]

Geodesic: curve of minimal length joining sufficiently close \(x \) and \(y \).

Exponential map: \(\exp_x(v) \) is the point \(z \in \mathcal{M} \) situated on the geodesic with initial position-velocity \((x, v) \) at distance \(\| v \| \) of \(x \).
Consider $f : \mathcal{M} \rightarrow \mathbb{R}$ twice differentiable.

Riemannian gradient: tangent vector at x satisfying

$$\frac{d}{dt}|_{t=0} f(\exp_x(tv)) = \langle v, \nabla f(x) \rangle_g$$

Hessian: operator $\nabla^2_x f$ such that

$$\frac{d}{dt}|_{t=0} \langle \nabla f(\exp_x(tv)), \nabla f(\exp_x(tv)) \rangle_g = 2\langle \nabla f(x), (\nabla^2_x f)v \rangle_g.$$

Second order Taylor expansion:

$$f(\exp_x(tv)) - f(x) \leq t\langle v, \nabla f(x) \rangle_g + \frac{t^2}{2} \| v \|_g^2 k$$

where k is a bound on the hessian along the geodesic.
Riemannian SGD on \mathcal{M}

Riemannian approximated gradient: $E_z(H(z_t, w_t)) = \nabla C(w_t)$

a tangent vector!

Stochastic gradient descent on \mathcal{M}: update

$$w_{t+1} \leftarrow \exp_{w_t}(-\gamma_t H(z_t, w_t))$$

w_{t+1} must remain on \mathcal{M}!
Outline

1 Stochastic gradient descent
 - Introduction and examples
 - SGD and machine learning
 - Standard convergence analysis

2 Stochastic gradient descent on Riemannian manifolds
 - Introduction
 - Results

3 Examples
Using the same maths but on manifolds, we have proved:

Theorem 1: confinement and a.s. convergence hold under hard to check assumptions linked to curvature.

Theorem 2: if the manifold is compact, the algorithm is proved to a.s. converge under painless conditions.

Theorem 3: same as Theorem 2, where a first order approximation of the exponential map is used.
Theorem 3

Example of first-order approximation of the exponential map:

\[-\gamma_t H(z_t, w_t) \]

The theory is still valid! (as the step $\to 0$)
Outline

1 Stochastic gradient descent
 - Introduction and examples
 - SGD and machine learning
 - Standard convergence analysis

2 Stochastic gradient descent on Riemannian manifolds
 - Introduction
 - Results

3 Examples
General method

Four steps:

1. identify the manifold and the cost function involved
2. endow the manifold with a Riemannian metric and an approximation of the exponential map
3. derive the stochastic gradient algorithm
4. analyze the set defined by $\nabla C(w) = 0$.
Considered examples

- Oja algorithm and dominant subspace tracking
- Matrix geometric means
- Amari’s natural gradient
- Learning of low-rank matrices
- Consensus and gossip on manifolds
Oja’s flow and online PCA

Online principal component analysis (PCA): given a stream of vectors \(z_1, z_2, \cdots \) with covariance matrix

\[
E(z_t z_t^T) = \Sigma
\]

identify online the \(r \)-dominant subspace of \(\Sigma \).

Goal: reduce **online** the dimension of input data entering a processing system to discard linear combination with small variances. Applications in data compression etc.
Oja’s flow and online PCA

Search space: $V \in \mathbb{R}^{r \times d}$ with orthonormal columns. VV^T is a projector identified with an element of the Grassman manifold possessing a natural metric.

Cost: $C(V) = -\text{Tr}(V^T \Sigma V) = E_z \| VV^T z - z \|^2 + \text{cst}$

Riemannian gradient: $(I - V_t V_t^T) z_t z_t^T V_t$

Exponential approx: $R_V(\Delta) = V + \Delta$ plus orthonormalisation

Oja flow for subspace tracking is recovered

$V_{t+1} = V_t - \gamma_t (I - V_t V_t^T) z_t z_t^T V_t$ plus orthonormalisation.

Convergence is recovered within our framework (Theorem 3).
Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari’s natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation
Filtering in the cone $P^+(n)$

Vector-valued image and tensor computing
Results of several filtering methods on a 3D DTI of the brain:

Figure: Original image “Vectorial” filtering “Riemannian” filtering

6 Courtesy from Xavier Pennec (INRIA Sophia Antipolis)
Matrix geometric means

Natural geodesic distance d in $P_+(n)$.

Karcher mean: minimizer of $C(W) = \sum_{i=1}^{N} d^2(Z_i, W)$.

No closed form solution of the Karcher mean problem.

A Riemannian SGD algorithm was recently proposed\(^7\).

SGD update: at each time pick Z_i and move along the geodesic with intensity $\gamma_t d(W, Z_i)$ towards Z_i

Convergence can be recovered within our framework.

\(^7\)Arnaudon, Marc; Dombry, Clement; Phan, Anthony; Yang, Le *Stochastic algorithms for computing means of probability measures* Stochastic Processes and their Applications (2012)
Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari’s natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation
Amari’s natural gradient

Considered problem: z_t are realizations of a parametric model with parameter $w \in \mathbb{R}^n$ and pdf $p(z; w)$. Let

$$Q(z, w) = -l(z; w) = -\log(p(z; w))$$

Cramer-Rao bound: any unbiased estimator \hat{w} of w based on the sample z_1, \cdots, z_k satisfies

$$\text{Var}(\hat{w}) \geq \frac{1}{k} G(w)^{-1}$$

with $G(w)$ the Fisher Information Matrix.
Amari’s natural gradient

Fisher Information (Riemannian) Metric at \(w \):

\[
\langle u, v \rangle_w = u^T G(w) v
\]

Riemannian gradient of \(Q(z, w) = \text{natural gradient} \)

\[-G^{-1}(w) \nabla_w l(z, w)\]

Exponential approximation: simple addition \(R_w(u) = w + u \).

Taking \(\gamma_t = 1/t \) we recover the celebrated

Amari’s natural gradient: \(w_{t+1} = w_t - \frac{1}{t} G^{-1}(w_t) \nabla_w l(z_t, w_t). \)

Fits in our framework and a.s. convergence is recovered
Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari’s natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix matrix estimation
Mahalanobis distance learning

Mahalanobis distance: parameterized by a positive semidefinite matrix \(W\) (inv. of cov. matrix)

\[
d^2_W(x_i, x_j) = (x_i - x_j)^T W (x_i - x_j)
\]

Learning: Let \(W = GG^T\). Then \(d^2_W\) simple Euclidean squared distance for transformed data \(\tilde{x}_i = Gx_i\). Used for classification.
Goal: integrate new constraints to an existing W

- equality constraints: $d_W(x_i, x_j) = y$
- similarity constraints: $d_W(x_i, x_j) \leq y$
- dissimilarity constraints: $d_W(x_i, x_j) \geq y$

Computational cost significantly reduced when W is low rank!
Interpretation and method

One could have projected everything on a horizontal axis! For large datasets low rank allows to derive algorithm with linear complexity in the data space dimension d.

Four steps:

1. identify the manifold and the cost function involved
2. endow the manifold with a Riemannian metric and an approximation of the exponential map
3. derive the stochastic gradient algorithm
4. analyze the set defined by $\nabla C(w) = 0$.
Geometry of $S^+(d, r)$

Semi-definite positive matrices of fixed rank

$$S^+(d, r) = \{ W \in \mathbb{R}^{d \times d}, W = W^T, W \succeq 0, \text{rank } W = r \}$$

Regression model: $$\hat{y} = d_W(x_i, x_j) = (x_i - x_j)^T W (x_i - x_j),$$

Risk: $$C(W) = E((\hat{y} - y)^2)$$

Catch: $$W_t - \gamma_t \nabla W_t((\hat{y}_t - y_t)^2)$$ has NOT same rank as W_t.

Remedy: work on the manifold!
Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari’s natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation
Decentralized covariance estimation

Set up: Consider a sensor network, each node i having computed its own empirical covariance matrix $W_{i,0}$ of a process.

Goal: Filter the fluctuations out by finding an average covariance matrix.

Constraints: limited communication, bandwidth etc.

Gossip method: two random neighboring nodes communicate and set their values equal to the average of their current values. ⇒ should converge to a meaningful average.

Alternative average why not the midpoint in the sense of Fisher-Rao distance (leading to Riemannian SGD)

$$d(\Sigma_1, \Sigma_2) \approx KL(\mathcal{N}(0, \Sigma_1) \| \mathcal{N}(0, \Sigma_2))$$
Example: covariance estimation

Conventional gossip at each step the usual average \(\frac{1}{2}(W_{i,t} + W_{j,t}) \) is a covariance matrix, so the algorithms can be compared.

Results: the proposed algorithm converges much faster!
Conclusion

We proposed an intrinsic SGD algorithm. Convergence was proved under reasonable assumptions. The method has numerous applications.

Future work includes:

- better understand consensus on hyperbolic spaces
- speed up convergence via Polyak-Ruppert averaging $\overline{w}_t = \sum_{i=0}^{t-1} w_i$: generalization to manifolds non-trivial
- tackle new applications: online learning of rotations