A Separation Principle on Lie Groups

Silvère Bonnabel Joint work with: Philippe Martin, Pierre Rouchon, Erwan Salaun

> Mines ParisTech Centre de Robotique Mathématiques et Systèmes silvere.bonnabel@mines-paristech.fr

> > IFAC 2011, August 31, 2011 Milan, Italy.

Introduction

- Separation principle for linear systems: "an optimal stable observer, feeding an optimal stable controller ⇒ an optimal stable feedback controller".
- Thus for a linear time-invariant system, combining a stable observer and a stable controller yields a stable closed-loop system.
- ▶ Does not hold for non-linear systems¹. Holds locally around steady-states.
- ▶ We consider invariant systems on Lie groups, and we state a local separation principle around a large class of trajectories that are not necessarily steady-states.
- Control on Lie groups is well known but observer design on Lie groups have only been introduced recently.

¹except for some classes: see Atassi and Khalil (1999),Gauthier and Kupka (1992),maithripala et al (2005)

Outline

The linear case

The Lie group case: a tutorial example

The Lie group case: theory

Examples

The linear case

Consider the system

$$\frac{d}{dt}x = Ax + Bu$$
 (1)

$$y = Cx + Du,$$
 (2)

$$y = Cx + Du, (2)$$

where $(x, u, y) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$. We would like to track the reference trajectory

$$\frac{d}{dt}x_r = Ax_r + Bu_r$$

$$y_r = Cx_r + Du_r$$
(3)

$$y_r = Cx_r + Du_r \tag{4}$$

using only the measured output y. We want to stabilize the equilibrium $(x - x_r, u - u_r) := (0, 0)$.

The linear case

One can use the linear controller-observer

$$u = u_r - K(\hat{x} - x_r)$$

$$\frac{d}{dt}\hat{x} = A\hat{x} + Bu - L(C\hat{x} + Du - y)$$
(5)

where the $m \times n$ matrix K and $n \times p$ matrix L are to be chosen. Setting $e_x := \hat{x} - x$ and $e_r = x - x_r$ we have

$$\frac{d}{dt}e_r = Ae_r + B(u - u_r) = Ae_r - BK(\hat{x} - x_r) = Ae_r - BK(e_x + e_r)$$

$$\frac{d}{dt}e_x = A\hat{x} + Bu - L(C\hat{x} - Cx) - (Ax + Bu) = (A - LC)e_x$$

Hence the closed-loop system

$$\frac{d}{dt}e_r = (A - BK)e_r - BKe_x \tag{6}$$

$$\frac{d}{dt}e_{x} = (A - LC)e_{x} \tag{7}$$

The last equation being autonomous, the system has a triangular structure hence its eigenvalues are those of A - BK together with those of A - LC.

The linear case

Conclusion: If2

- ▶ *L* is such that the estimation error $e_x = \hat{x} x$ converges exp (recall $\frac{d}{dt}e_x = (A - LC)e_x$)
- ▶ The control law $u = u_r K(x x_r)$ is such that the tracking error $e_r = x_r - x$ converges exp (recall in this case $\frac{d}{dt}e_r = (A - BK)e_r$)

Then

$$u = u_r - K(\hat{x} - x_r)$$

allows the system to converge to the reference trajectory (x_r, u_r, y_r) using only the measured output ν .

The (non) linear case

Consider the non-linear system

$$\frac{d}{dt}x = f(x, u) \tag{8}$$

$$y = h(x, u), (9)$$

We would like to track the reference trajectory

$$\frac{d}{dt}x_r = f(x_r, u_r) \tag{10}$$

$$y_r = h(x_r, u_r) \tag{11}$$

using only the measured output y. We want to stabilize the equilibrium point $(\bar{\eta}_x, \bar{\eta}_u) := (0,0)$ of the tracking error system

$$\frac{d}{dt}\eta_X = f(X_r + \eta_X, u_r + \eta_U) - f(X_r, u_r)$$
(12)

$$\eta_{y} = h(x_{r} + \eta_{x}, u_{r} + \eta_{u}) - h(x_{r}, u_{r}),$$
(13)

where $\eta_X := X - X_r$, $\eta_U := U - U_r$ and $\eta_V := Y - Y_r$.

The (non) linear case

Linearize the error system with $\xi_x = \delta \eta_x, \xi_u = \delta \eta_u, \xi_y = \delta \eta_y$

$$\dot{\xi}_{x} = \partial_{1} f(x_{r}, u_{r}) \xi_{x} + \partial_{2} f(x_{r}, u_{r}) \xi_{u} \qquad = A \xi_{x} + B \xi_{u}$$
 (14)

$$\xi_y = \partial_1 h(x_r, u_r) \xi_x + \partial_2 h(x_r, u_r) \xi_u \qquad = C \xi_x + D \xi_u. \tag{15}$$

And consider the observer-controller (L and K may depend on \hat{x})

$$\xi_{u} = -K\hat{\xi}_{x}$$

$$\frac{d}{dt}\hat{\xi}_{x} = A\hat{\xi}_{x} + B\xi_{u} - L(C\hat{\xi}_{x} + D\xi_{u} - \xi_{y})$$
(16)

Setting $e_x := \hat{\xi}_x - \xi_x$ the closed-loop system

$$\frac{d}{dt}\xi_{x} = (A - BK)\xi_{x} - BKe_{x} \tag{17}$$

$$\frac{d}{dt}e_{x} = (A - LC)e_{x} \tag{18}$$

has a triangular structure hence its eigenvalues are those of A - BK together with those of A - LC.

BUT A, B, C, D are NOT time-invariant unless the reference trajectory (x_r, u_r) is an equilibrium point, i.e. $f(x_r, u_r) = 0$.

The (non) linear case

Conclusion: If

- ▶ *L* is such that the estimation error $e_x = \hat{x} x$ converges exp
- ► The control law $u = u_r K(x x_r)$ is such that the tracking error $e_r = x_r x$ converges exp

Then the control law

$$u = u_r - K(\hat{x} - x_r) \tag{19}$$

$$\frac{d}{dt}\hat{x} = A\hat{x} + Bu + L(y - \hat{y}), \tag{20}$$

locally stabilizes $(\bar{\eta}_x, \bar{\eta}_u) := (0,0)$ if the reference trajectory is an equilibrium point.

The Lie group case

- ► A tutorial example on *SO*(3)
- ► General theory

Consider a fully actuated rigid body in space on SO(3)

$$\frac{d}{dt}R = R(u \wedge \cdot) \tag{21}$$

$$y = Rb, (22)$$

We would like to track the reference trajectory

$$\frac{d}{dt}R_r = R_r(u_r \wedge \cdot) \tag{23}$$

$$v_r = R_r b \tag{24}$$

using only the measured output y. We want to stabilize the equilibrium point $(\bar{\eta}_R, \bar{\eta}_u) := (Id, 0)$ of the tracking error system

$$\frac{d}{dt}\eta_R = -(u_r \wedge \cdot)\eta_R + \eta_R(u \wedge \cdot) \tag{25}$$

$$\eta_{y} = R^{-1} y_{r} - b, (26)$$

where $\eta_R := R_r^T R$, $\eta_u := u - u_r$ and $\eta_v := \eta_R b - b$.

Consider the observer³ on the Lie group SO(3)

$$\frac{d}{dt}\hat{R} = \hat{R}(u + L(\hat{R}^{-1}y)) \wedge \cdot$$

Letting $\epsilon_R = R^{-1}\hat{R}$ we have the estimation error equation

$$\frac{d}{dt}\epsilon_R = -(u\wedge\cdot)R^{-1}\hat{R} + R^{-1}\frac{d}{dt}\hat{R} = -(u\wedge\cdot)\epsilon_R + \epsilon_R((u+L\epsilon_R^{-1}b)\wedge\cdot)$$

as y = Rb. Letting $\epsilon_R \simeq Id + e_R \wedge \cdot$ we have up to second order terms in e_R , $u - u_r$

$$\frac{d}{dt}e_R=-u_r\wedge e_R-L(e_R\wedge b)$$

which is autonomous if u_r is constant (reminds of $\frac{d}{dt}e_x = (A - LC)e_x$).

³see e.g. Mahony, Hamel, Pflimlin (CDC 2005, IEEE-TAC 2008), Vasconcelos, Silvestre and Oliveira (CDC 2008), Martin, Salaun (CDC 2008), Bonnabel, Martin, Rouchon (IEEE-TAC 2008)

Linearize the tracking error system. Let $R_r^{-1}R \simeq Id + (\xi_R \wedge \cdot)$ and $\xi_u = u - u_r$

$$\dot{\xi}_R = -\mathbf{u}_r \wedge \xi_R + \mathbf{u} - \mathbf{u}_r \qquad \qquad = A(\mathbf{u}_r)\xi_R + B\xi_u \tag{27}$$

$$\xi_{y} = \xi_{R} \wedge b \qquad \qquad = C\xi_{R}. \tag{28}$$

Considering in addition the linear controller where $R_r^{-1}\hat{R}\simeq Id+\hat{\xi}_R\wedge\cdot$

$$\xi_{\mathsf{u}} = -\mathsf{K}\hat{\xi}_{\mathsf{R}} = -\mathsf{K}(\xi_{\mathsf{R}} + \mathsf{e}_{\mathsf{R}})$$

as $R_r^{-1}\hat{R} = (R_r^{-1}R)(R^{-1}\hat{R})$. The closed-loop system is

$$\dot{\xi}_R = -\mathbf{u}_r \wedge \xi_R - K(\xi_R + \mathbf{e}_R) \qquad = (A - BK)\xi_R - BK\mathbf{e}_R \qquad (29)$$

$$\dot{e}_R = -u_r \wedge e_R - L(e_R \wedge b) \qquad = (A - LC)e_R \tag{30}$$

has a triangular structure. Moreover A, B, C, D are time-invariant as soon as u_c is constant.

Conclusion: If⁴ the observer and the controller locally converge around (R_r, u_r) control law

$$u = u_r - K\kappa(R^{-1}\hat{R})$$
$$\frac{d}{dt}\hat{R} = \hat{R}(u \wedge \cdot) + \hat{R}(L(\hat{R}^{-1}y) \wedge \cdot)$$

then locally stabilizes (R, u) around the reference trajectory (R_r, u_r) generated by

$$u_r \equiv \text{const}$$

using only the measured output y.

NB: Here κ is the logarithm map of the group (i.e. the inverse of the exponential map of the group).

⁴provided, (A,C) is observable and (A,B) controllable ←□ ト ← □ ⊢ □ ← □ ⊢ □ ⊢ □ ← □ ⊢

- ▶ In the general non-linear case the matrices A, B, C, D of the linearized system depend on (x_r, u_r) .
- In the case of the fully-actuated system on SO(3) the matrices A, B, C, D depend only on (u_r)
- Is it logical ??

A similar result can be proved in the general case.

We consider the system where the state is a Lie group *G*

$$\frac{d}{dt}x = f(x, u)$$
$$y = h(x, u),$$

Definition

Let Σ be an open set (or more generally a manifold) and G a Lie group. A transformation group on Σ is a family of smooth maps

$$\xi \in \Sigma \mapsto \phi_{\mathsf{X}}(\xi) \in \Sigma$$

such that

- $ightharpoonup \phi_e(\xi) = \xi \text{ for all } \xi$
- $\phi_{x_2} \circ \phi_{x_1}(\xi) = \phi_{x_2x_1}(\xi)$ for all $x_1, x_2 \in G$ and $\xi \in \Sigma$.

Consider the transformation group on $G \times \mathcal{U} \times \mathcal{Y}$ defined by

$$\phi_{x_0}(x, u, y) := (x_0 x, \psi_{x_0}(u), \varrho_{x_0}(y))$$

We will assume the system is invariant to this group action i.e. for all x_0, x, u letting

$$(X,U,Y):=\big(x_0x,\psi_{x_0}(u),\varrho_{x_0}(y)\big)$$

we have

$$\frac{d}{dt}X = f(X, U)$$
$$Y = h(X, U),$$

the system is unchanged by the transformation.

For those invariant systems on Lie group one can build invariant observers⁵.

Those symmetry-preserving observers are such that the error system around the so-called permanent trajectories defined by

$$I_r = \psi_{x_r^{-1}}(u_r) \equiv const$$

is time-invariant⁶.

- Fortunately, the tracking error system is also time-invariant around permanent trajectories.
- Thus a separation principle holds around permanent trajectories.
- Note that, in the previous example we had $I_r = u_r$.

⁵see e.g. Mahony, Hamel, Pflimlin (CDC 2005, IEEE-TAC 2008), Vasconcelos, Silvestre and Oliveira (CDC 2008), Martin, Salaun (CDC 2008), Bonnabel, Martin, Rouchon (IEEE-TAC 2008)

⁶in Bonnabel, Martin, Rouchon: Symmetry-preserving observers on Lie groups, IEEE-TAC (2009)

Examples

Localizing from landmarks using sonar

- We consider a non-holonomic car localizing from measurements of relative position to known landmarks.
- ▶ The group is *SE*(2).
- A controller and an invariant observer were designed.
- The permanent trajectories are lines and circles with constant speed.
- Around those primitives a separation principle holds and the observer-controller is proved to be stable.

Simple mechanical systems on Lie groups

We consider fully-actuated systems described by the so-called Euler-Poincaré equations⁷

$$\frac{d}{dt}x = f(x,\xi) \tag{31}$$

$$\frac{d}{dt}\xi = A(\xi) + I^{-1}(F(x,\xi) + u) \tag{32}$$

where

- x ∈ G is the (generalized) position, with G a Lie group (the configuration space),
- $\xi \in T_x G$ is the (generalized) velocity,
- ▶ $I^{-1}(F(x,\xi)+u)$ is the resultant force acting on the system,
- ▶ $u \in T_xG$ denotes the control.

It does not directly fit in the framework, but the results were can be extended in a special case.

⁷as discribed by e.g. Bullo, Murray (1999)

Conclusion

- We proved a local separation principle around a large set of trajectories for non-linear invariant systems on Lie groups.
- A link was established between observers on Lie groups and control on Lie groups.
- ▶ In future research we plan to explore examples of mechanical systems for which those results apply.