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Introduction

I Separation principle for linear systems: “an optimal stable
observer, feeding an optimal stable controller⇒ an optimal
stable feedback controller".

I Thus for a linear time-invariant system, combining a stable
observer and a stable controller yields a stable closed-loop
system.

I Does not hold for non-linear systems1. Holds locally around
steady-states.

I We consider invariant systems on Lie groups, and we state a
local separation principle around a large class of trajectories that
are not necessarily steady-states.

I Control on Lie groups is well known but observer design on Lie
groups have only been introduced recently.

1except for some classes: see Atassi and Khalil (1999),Gauthier and Kupka
(1992),maithripala et al (2005)
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The linear case

Consider the system

d
dt

x = Ax + Bu (1)

y = Cx + Du, (2)

where (x ,u, y) ∈ Rn × Rm × Rp. We would like to track the reference
trajectory

d
dt

xr = Axr + Bur (3)

yr = Cxr + Dur (4)

using only the measured output y . We want to stabilize the
equilibrium (x − xr ,u − ur ) := (0,0).



The linear case
One can use the linear controller-observer

u = ur − K (x̂ − xr ) (5)
d
dt

x̂ = Ax̂ + Bu − L(Cx̂ + Du − y)

where the m × n matrix K and n × p matrix L are to be chosen.
Setting ex := x̂ − x and er = x − xr we have

d
dt

er = Aer + B(u − ur ) = Aer − BK (x̂ − xr ) = Aer − BK (ex + er )

d
dt

ex = Ax̂ + Bu − L(Cx̂ − Cx)− (Ax + Bu) = (A− LC)ex

Hence the closed-loop system

d
dt

er = (A− BK )er − BKex (6)

d
dt

ex = (A− LC)ex (7)

The last equation being autonomous, the system has a triangular
structure hence its eigenvalues are those of A− BK together with
those of A− LC.



The linear case

Conclusion: If2

I L is such that the estimation error ex = x̂ − x converges exp
(recall d

dt ex = (A− LC)ex )
I The control law u = ur − K (x − xr ) is such that the tracking error

er = xr − x converges exp (recall in this case d
dt er = (A− BK )er )

Then

u = ur − K (x̂ − xr )

allows the system to converge to the reference trajectory (xr ,ur , yr )
using only the measured output y .

2provided, (A,C) is observable and (A,B) controllable



The (non) linear case
Consider the non-linear system

d
dt

x = f (x ,u) (8)

y = h(x ,u), (9)

We would like to track the reference trajectory

d
dt

xr = f (xr ,ur ) (10)

yr = h(xr ,ur ) (11)

using only the measured output y . We want to stabilize the
equilibrium point (η̄x , η̄u) := (0,0) of the tracking error system

d
dt
ηx = f (xr + ηx ,ur + ηu)− f (xr ,ur ) (12)

ηy = h(xr + ηx ,ur + ηu)− h(xr ,ur ), (13)

where ηx := x − xr , ηu := u − ur and ηy := y − yr .



The (non) linear case
Linearize the error system with ξx = δηx , ξu = δηu, ξy = δηy

ξ̇x = ∂1f (xr ,ur )ξx + ∂2f (xr ,ur )ξu = Aξx + Bξu (14)
ξy = ∂1h(xr ,ur )ξx + ∂2h(xr ,ur )ξu = Cξx + Dξu. (15)

And consider the observer-controller (L and K may depend on x̂)

ξu = −K ξ̂x (16)
d
dt
ξ̂x = Aξ̂x + Bξu − L(Cξ̂x + Dξu − ξy )

Setting ex := ξ̂x − ξx the closed-loop system

d
dt
ξx = (A− BK )ξx − BKex (17)

d
dt

ex = (A− LC)ex (18)

has a triangular structure hence its eigenvalues are those of A− BK
together with those of A− LC.
BUT A,B,C,D are NOT time-invariant unless the reference trajectory
(xr ,ur ) is an equilibrium point, i.e. f (xr ,ur ) = 0.



The (non) linear case

Conclusion: If
I L is such that the estimation error ex = x̂ − x converges exp
I The control law u = ur − K (x − xr ) is such that the tracking error

er = xr − x converges exp
Then the control law

u = ur − K (x̂ − xr ) (19)
d
dt

x̂ = Ax̂ + Bu + L(y − ŷ), (20)

locally stabilizes (η̄x , η̄u) := (0,0) if the reference trajectory is an
equilibrium point.



The Lie group case
I A tutorial example on SO(3)

I General theory



A tutorial example
Consider a fully actuated rigid body in space on SO(3)

d
dt

R = R(u ∧ ·) (21)

y = Rb, (22)

We would like to track the reference trajectory

d
dt

Rr = Rr (ur ∧ ·) (23)

yr = Rr b (24)

using only the measured output y . We want to stabilize the
equilibrium point (η̄R , η̄u) := (Id ,0) of the tracking error system

d
dt
ηR = −(ur ∧ ·)ηR + ηR(u ∧ ·) (25)

ηy = R−1yr − b, (26)

where ηR := RT
r R, ηu := u − ur and ηy := ηRb − b.



A tutorial example

Consider the observer3 on the Lie group SO(3)

d
dt

R̂ = R̂
(
u + L(R̂−1y)

)
∧ ·

Letting εR = R−1R̂ we have the estimation error equation

d
dt
εR = −(u ∧ ·)R−1R̂ + R−1 d

dt
R̂ = −(u ∧ ·)εR + εR((u + Lε−1

R b) ∧ ·)

as y = Rb. Letting εR ' Id + eR ∧ · we have up to second order terms
in eR , u − ur

d
dt

eR = −ur ∧ eR − L(eR ∧ b)

which is autonomous if ur is constant (reminds of d
dt ex = (A− LC)ex ).

3see e.g. Mahony, Hamel, Pflimlin (CDC 2005, IEEE-TAC 2008), Vasconcelos,
Silvestre and Oliveira (CDC 2008), Martin, Salaun (CDC 2008), Bonnabel, Martin,
Rouchon (IEEE-TAC 2008)



A tutorial example

Linearize the tracking error system. Let R−1
r R ' Id + (ξR ∧ ·) and

ξu = u − ur

ξ̇R = −ur ∧ ξR + u − ur = A(ur )ξR + Bξu (27)
ξy = ξR ∧ b = CξR . (28)

Considering in addition the linear controller where R−1
r R̂ ' Id + ξ̂R ∧ ·

ξu = −K ξ̂R = −K (ξR + eR)

as R−1
r R̂ = (R−1

r R)(R−1R̂). The closed-loop system is

ξ̇R = −ur ∧ ξR − K (ξR + eR) = (A− BK )ξR − BKeR (29)
ėR = −ur ∧ eR − L(eR ∧ b) = (A− LC)eR (30)

has a triangular structure. Moreover A,B,C,D are time-invariant as
soon as ur is constant.



A tutorial example

Conclusion: If4 the observer and the controller locally converge
around (Rr ,ur ) control law

u = ur − Kκ(R−1R̂)

d
dt

R̂ = R̂(u ∧ ·) + R̂(L(R̂−1y) ∧ ·)

then locally stabilizes (R,u) around the reference trajectory (Rr ,ur )
generated by

ur ≡ const

using only the measured output y .

NB: Here κ is the logarithm map of the group (i.e. the inverse of the
exponential map of the group).

4provided, (A,C) is observable and (A,B) controllable



The Lie group case: theory

I In the general non-linear case the matrices A,B,C,D of the
linearized system depend on (xr ,ur ).

I In the case of the fully-actuated system on SO(3) the matrices
A,B,C,D depend only on (ur )

I Is it logical ??

A similar result can be proved in the general case.



The Lie group case: theory

We consider the system where the state is a Lie group G

d
dt

x = f (x ,u)

y = h(x ,u),

Definition
Let Σ be an open set (or more generally a manifold) and G a Lie
group. A transformation group on Σ is a family of smooth maps

ξ ∈ Σ 7→ φx (ξ) ∈ Σ

such that
I φe(ξ) = ξ for all ξ
I φx2 ◦ φx1 (ξ) = φx2x1 (ξ) for all x1, x2 ∈ G and ξ ∈ Σ.



The Lie group case: theory

Consider the transformation group on G × U × Y defined by

φx0 (x ,u, y) :=
(
x0x , ψx0 (u), %x0 (y)

)
We will assume the system is invariant to this group action i.e. for all
x0, x ,u letting

(X ,U,Y ) :=
(
x0x , ψx0 (u), %x0 (y)

)
we have

d
dt

X = f (X ,U)

Y = h(X ,U),

the system is unchanged by the transformation.



The Lie group case: theory

For those invariant systems on Lie group one can build invariant
observers5.

I Those symmetry-preserving observers are such that the error
system around the so-called permanent trajectories defined by

Ir = ψx−1
r

(ur ) ≡ const

is time-invariant6.
I Fortunately, the tracking error system is also time-invariant

around permanent trajectories.
I Thus a separation principle holds around permanent trajectories.
I Note that, in the previous example we had Ir = ur .

5see e.g. Mahony, Hamel, Pflimlin (CDC 2005, IEEE-TAC 2008), Vasconcelos,
Silvestre and Oliveira (CDC 2008), Martin, Salaun (CDC 2008), Bonnabel, Martin,
Rouchon (IEEE-TAC 2008)

6in Bonnabel, Martin, Rouchon: Symmetry-preserving observers on Lie groups,
IEEE-TAC (2009)



Examples



Localizing from landmarks using sonar

I We consider a non-holonomic car localizing from measurements
of relative position to known landmarks.

I The group is SE(2).
I A controller and an invariant observer were designed.
I The permanent trajectories are lines and circles with constant

speed.
I Around those primitives a separation principle holds and the

observer-controller is proved to be stable.



Simple mechanical systems on Lie groups

We consider fully-actuated systems described by the so-called
Euler-Poincaré equations7

d
dt

x = f (x , ξ) (31)

d
dt
ξ = A(ξ) + I−1(F (x , ξ) + u) (32)

where
I x ∈ G is the (generalized) position, with G a Lie group (the

configuration space),
I ξ ∈ TxG is the (generalized) velocity,
I I−1(F (x , ξ) + u) is the resultant force acting on the system,
I u ∈ TxG denotes the control.

It does not directly fit in the framework, but the results were can be
extended in a special case.

7as discribed by e.g. Bullo, Murray (1999)



Conclusion

I We proved a local separation principle around a large set of
trajectories for non-linear invariant systems on Lie groups.

I A link was established between observers on Lie groups and
control on Lie groups.

I In future research we plan to explore examples of mechanical
systems for which those results apply.
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